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Necessary and sufficient conditions which imply the uniform convergence of the
Fourier-Jacobi series of a continuous function are obtained under an assumption
that the Fourier—Jacobi series is convergent at the end points of the segment of
orthogonality [—1, 1]. The conditions are in terms of the modulus of continuity, A-

variation, and the modulus of variation of a function. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

1. Throughout this paper we use the following general notations: N is the
set of positive integers. By ¢ we denote positive constants, possibly
depending on some fixed parameters, and, in general, distinct in different
formulas. Sometimes the important arguments of ¢ will be written explicitly
in the expressions for it. For quantities 4, and B,, possibly depending on
some other variables as well, we write 4, = o(B,), 4, = O(B,), or A, < B, as
n — 0o, if lim,_o Ay/By =0, A, <cB,, or ¢;B,<A,<c3B,, ne N, respec-
tively.

Cl[a, b] is the space of continuous functions on [a, b] with uniform norm
I lljapy- @(f,0,[a,b]) = max{|f(x) — f(0)|: x,t €[a,b] and |x — #[<J} is the
modulus of continuity of f € Cla,b] on [a,b]. w(d) is a given modulus of
continuity, i.e., a continuous non-decreasing semiadditive function on [0,
00), w(0) = 0. H” = {f: w(f, d,[a, b]) = O(w()) for § =0}.

If a function ¢ is integrable on [—7, 7], then g has a Fourier series with
respect to the trigonometric system (1,cos n6,sin n0)°2 ,, and we denote the

n=1>
nth partial sum of the Fourier series of g by S,(g, ), i.e.,

S.(9.0) = “Oég) + Z (ax(g)cos k6 + by(g)sin kO),
k=1

207

0021-9045/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.



208 GEORGE KVERNADZE

where

1 [T 1 ["
ar(g) = E/ g(t)cos kt dt and bi(g) = E/ g(t)sin kt dt

are the kth Fourier coefficients of the function g.

The function p®P is called a Jacobi weight if p@P(x) = (1 — x)*(1 + x)’,
where o> —1 and > —1. If p®P is a Jacobi weight, then by a(p®F) =
(P,(,“’/’)(x));io we denote the corresponding system of orthonormal poly-
nomials P*P(x) = y,(a, B)x" + lower degree terms, 7,(x, ) >0, i.e.,

1
/ Pé""m(t)Pg’/j)(t)p(“’/”)(t) dt = O,
-1

The system o(p®P) is defined uniquely and called the Jacobi system of
orthonormal polynomials.

If £p*P is an integrable function on [—1, 1], then f has a Fourier series
with respect to the system a(p®P), and by S*P(f,x) we denote the nth
partial sum of the Fourier series of f with respect to the system a(p*#), i.e.,

n 1
%me=ZAWm$Wwa/ﬂMWMWWM@ (1)
k=0 -1
where

1
AP0 = [ P00 o)

is the kth Fourier coefficient of the function f, and

n

K&,y =" PP )PP () )
k=0

is the Dirichlet kernel of the system a(p®#).

By U®P we denote the class of functions, defined on the segment [—1, 1],
for which the sequence of partial sums of its Fourier series with respect to
the system o(p®P) is uniformly convergent on the whole segment of
orthogonality [—1,1], i.e., ISP(f,-) — fll_11; = o(1) as n > oo,

We say that a function f, defined on the segment [—1, 1], belongs to the
class EP*P), if the sequences (S“P(f, £1)))°, are convergent.

DEerINITION 1. We say that a function f, defined on the segment [a, b],
belongs to DL[a, b] class, if w(f,1/n,[a,b])Inn = o(1) as n — oc.

DEFINITION 2 (Waterman [18]). Let A = (4),~, be a non-decreasing
sequence of positive numbers such that >_,7, 1/4; = co. A function f is
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said to have A-bounded variation on [a,b], i.e., f € ABV][a,b], if

va(f,[a, b]) = sup Z |/ (Gear) _}f(x2k71)| <00,
n = Lk
where I is an arbitrary system of disjoint intervals (xaz_1,x2) < [a,b],
k=1,2,...,n

If /4 = 1, k € N, then ABV][a,b] = V]a, b], the Jordan class of functions of
bounded variation. Following Waterman, we say that f is of harmonic
bounded variation, i.e., f € HBV|[a,b], if /x =k, ke N.

DEFINITION 3 (Waterman [19]). Let A(€) = (k+e)jey, € € N, where the
sequence A = (/) satisfies the condition of Definition 2. A function f €
ABV]a,b] is said to be continuous in A-variation, i.e., f € AcBV][a,b], if
va(f.la, b)) = o(1) as £ — oo.

DErINITION 4 (Canturija [9]). Let f be a bounded function on [, b]. The
modulus of variation of f is called the function v(f,n,[a,b]) defined for
n=20,1,2,... as follows: v(f,0,][a, b]) = 0, while for n>1

v(f,n,[a,b]) = sup |/ Geat) = S Cear—)l,
=1

I, 3=

where II, is an arbitrary system of n disjoint subintervals (xa;_1,x2),
k=1, ...,n, of the segment [a, b].

If v(n), n € N, is a non-decreasing convex function and v(0) = 0, then we
call v(n) the modulus of variation.

The class of functions which satisfy the relation v( f, n,[a, b]) = O(v(n)) as
n — oo will be denoted by V[v][a, b].

In particular, V[1][a, b] = V]a, b].

If there is no ambiguity, we will usually omit the dependence on the
domain and simply refer to one of the introduced classes of functions or the
quantities as C, Vy,... , or v (f), v(f,n), etc.

2. The well-known result [17, Theorem 9.1.2, p. 246] about equiconver-
gence indicates that uniform convergence conditions of Fourier—Jacobi
series strictly inside of the orthogonality segment, i.e., on an arbitrary
segment [a,b] = (—1,1), should be similar to uniform convergence
conditions of Fourier series with respect to the trigonometric system. For
example, the condition f € DL guarantees the uniform convergence of
Fourier—Jacobi series of the function f on [a,b] < (—1,1) (cf. [16, Theorem
4.7, pp. 146, 300]). Let us recall that f € DL is also a sufficient condition for
the uniform convergence of a 2z-periodic function’s Fourier series with
respect to the trigonometric system.
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It is also known that DL = U*P when —1<a< —1/2 and —1<f<
—1/2 [4, Theorem 1, p. 947]. The same theorem implies that for —1 <a<
—1/2 and —1<fi< — 1/2 only continuity of a function f guarantees that
f € EP®P).

On the other hand, for the uniform convergence of Fourier—Jacobi series
on the whole segment of orthogonality far stronger conditions must be
imposed on a function (cf. [1, 4, 12]).

THEOREM (Agakhanov and Natanson [1]). Let o> —1/2 and > —1/2.
If the modulus of continuity of a function f satisfies the condition

. 1
lim o <f, n> pmax(@p)+1/2 0, (3)

n—0oo

then f e U®P.

Let us mention, that condition (3) is necessary for the convergence of the
Fourier—Jacobi series at the end points of the segment [—1, 1] as well.

Summarizing all the above the following hypothesis arises: Let the
Fourier—Jacobi series of a continuous function f be convergent at the end
points of the segment [—1, 1]. In addition, let the function satisfy a condition
implying the uniform convergence of its Fourier series with respect to the
trigonometric system. (It is a far less restrictive condition than a condition
guaranteeing the uniform convergence of its Fourier—Jacobi series on the
whole segment [—1,1].) Do these conditions guarantee the uniform
convergence of the Fourier—Jacobi series of the function f on the whole
segment [—1,1]?

The first paper dealing with this problem is due to Zorshchikov.

THEOREM (Zorshchikov [22]). Let a function f be representable in the
form f(x) = (1 —x>)h(x) and h e DL. If f € EP®P for some —1/2<a<1/2
and —1/2<p<1/2, then f e U*P,

Belen’kii has completely solved the problem in terms of the modulus of
continuity.

THEOREM (Belen’kii [8, Theorem, p. 901]). Let o> —1 and > —1. Then
the inclusion

DL n EP*P < y*P

is valid.

In the present paper, we study those conditions on the variation of a
continuous function which guarantee the uniform convergence of its
Fourier—Jacobi series under an assumption that the series is convergent at
the end points of the segment of orthogonality [—1, 1].
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2. MAIN RESULTS

In what follows, we always assume that indices « > —1 and > —1 of a
weight function p®f are arbitrary but fixed. In addition, sometimes we
abbreviate notations for the intersection of two sets. For example, we write
CVv] instead of C n V[v].

THEOREM 1. Let H?” and V|v] be classes of functions defined by a modulus
of continuity w(d) and a modulus of variation v(n), respectively. Then the
inclusion

H*V[] n EP*P < y®P
is valid if and only if

, _ N1 &Lk
Jim, 1“&“{‘“(‘); PRy @

1 k=t+1

=

COROLLARY 1. Let

_(nlnt1/8)" n

w(d) = ni/s y=0 and v(n) = (5)

Innlnlnn
Then H*V[v] n EP%P) < U@P,

COROLLARY 2. Let V[v] be a class of functions defined by a given modulus
of variation v(n). Then the inclusion

CV[v] n EP*P < y®h

is valid if and only if
> ok
> %< 0. (6)

k=1

THEOREM 2. Let ABV be a class of functions defined by a given sequence
A = ()i Then the inclusion

CABV n EP®P < y®h

is valid if and only if
ABV < HBV. (7)

In particular, CV n EP*P < y@P,
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Let us clarify the significance of condition (4) and outline the central idea
of the proofs.

Condition (4) combines conditions imposed on the modulus of continuity
and the variation of a function. As a result (see Corollary 1) it implies
convergence conditions which are less restrictive than conditions imposed
only on the modulus of continuity or the variation of a function, thus the
convergence is obtained for wider classes of functions.

The techniques used to obtain a Fourier series convergence condition in
terms of the modulus of continuity are typically based on the following
inequality (or some variation of it) [16, p. 35]:

1f@) — SEP(f, x| < (1 + LEP0)EL(f) (8)

for xe[-1,1], where E,(f)=infp |[f — P, is the best polynomial
approx1mat10n for f of degree less than » in the uniform metric and
LOP(x) = f IK@P)(x, 1)|p*P(f)dt is the nth Lebesgue constant of the
Fourier—Jdcobl series.

By Jackson’s inequality, E,(f)<1lw(f, 1/n) [16, p. 391]. Thus, by virtue
of condition (8), lim,_,~, L*P(x)w(f,1/n) = 0 guarantees the convergence of
Fourier—Jacobi series at the given point x. Hence, given an accurate estimate
for the nth Lebesgue constant (cf. [4]), convergence conditions of Fourier—
Jacobi series in term of the modulus of continuity will instantly follow.

However, in order to obtain a convergence condition in terms of the
variation of a function, much more delicate estimate of the Lebesgue
constant is needed. Namely, an estimate for [T KD (x, 0)|p™P(1) dt, | [

K@P (x, 1)p*P(f) dt|, and |f K®B(x, 1)p@P (1) di], where x; = cos(k/n), k =
1,2, ...,n—1.

This is an outline of the proof: In Lemma 1 we obtain estimates for the
Lebesgue constant over a subinterval with the desired length. Next, in
Lemma 2 we estimate the tail of the Fourier—Jacobi series of a given
function it terms of the functions oscillation over the system of non-
overlapping intervals. Then the actual proofs of the theorems follow the
well-known schemes.

Remark. Let us also mention that the conditions imposed on a function
in Theorems 1 and 2 and Corollary 2 are necessary and sufficient for the
uniform convergence of its Fourier series with respect to the trigonometric
system. Regarding conditions (4) and (7) see [10, Theorem 1, p. 476; 18,
Theorem 2, p. 112]. Theorems 1 and 2 as a corollary imply Theorem B as
well as necessary and sufficient conditions in terms of @-variation [21] and
Banach indicatrix [7] (see [10, Corollaries 2, 3, p. 478; 11,13, Theorem 1, p.
620; 15]).



FOURIER-JACOBI SERIES 213
3. PRELIMINARIES

In what follows, we always assume that the integers » and m are
determined by the following conditions: oe(r—3/2,7r—1/2] and
pe(m—3/2,m—1/2]. ne N assumed to be sufficiently large.

In addition, g(tr) = f(cost) for 7 €[0, 7], where g is a 2n-periodic even
function. 6 = arccos x and t = arccos ¢ for x,¢ € [—1,1].

Let us mention that the function g belongs to the same class of a
generalized variation whatever class the function f belongs to and
w(d,9)<w(0, f) for 6=0.

We will use the well-known estimates:

> =0m") fory>-1 ©9)
k=1

and

Y 1—0 ! f > 1 10

The following formulas and lemmas are necessary in what follows:

PP = (1P (=), (11)

—a-1/2 —p-1/2
< p(a -0 ) (aen )T

holds for x e [-1,1] and n e N.
P*P)(cos 1) = x(a, B, )[cos(iit + 7) + O(1)(nsin 1)~ '], (13)

where x(a, §,7) = 270212 5in=*"12(1 /2)cos V21 /2), i=n + (0 + B
+1)/2, 7= —Qa+ /4, and ¢/n<t1<n — ¢/m:
(= DKP(x, 1) = VP EED P @) — PP 0PED @) - (14)

n+1

and

(x — OK*P(x, 1) = 1P — )PE PP (x) — (1 — x)PET D () PP (1)),
(15)

where 0 <lim,,_,~, vV*? <00 and 0 <lim,_, p*? < 0.
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Regarding (11)— (15) see [17, formula (4.1.3), p. 59], [17, Theorem 7.32.2,
p- 169], [17, Theorem 8.21.13, p. 197], [17, formula (4.5.2), p. 71], and [8, p.
903], respectively.

In addition, let us introduce the following notations:

Kl = KI(O(, ﬁ; n, 6’ T)

_ 27+[3+r+m+2‘u(a+r B+m) Sanr (0/2)0082m(0/2)P(a+) ﬂ+m)(COS 0)

n—r—m n—r—m

P,ﬁ‘i*“;} p+m) (COS ‘E)

r—

L in**3(¢/2)cos* 1 (z/2) (16)

and
K> = Ky(a, B,n,0,7)
= rthrmt2 et fim) G220 /2)c0s2m (0 /2) P LB (os )

P (cos T)

2+ 2p+1

2 2 1
cos 0 —cost (t/2)cos™ (z/2). 17)
It is trivial to check that (see (15))

(1 — cos ) (1 + cos O)"K*7+m cos 0, cos 1)p™P(cos 1)sin T = K; — K>. (18)

n—r—m

Furthermore, let

hn =20, (19)
nj
where ny=n—r—m+@+r+p+m+2)/2, y, =—Qa+2r+3)n/4, ny
=n—r—m+(@+r+pf+m+1)/2, and y, = —(20 + 2r + 1)n/4, respec-
tively. In addition, #(0) = 0 and # (7) = =/2, where i = min(;, 72) and 7; is
the largest integer satisfying the condition # (n,)<n/2,i=1,2.

It is obvious that

£ (k) =< % (20)

fori=1,2.
Let us set

£, (k)

dp = d; ,(0) = / Ki| d, 1)

(k1)

n/2
/ Kl' dt .
4, (k)

A= AL(0) = (22)
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1,k)
/ Ki dt
4(Lp/2D

fori=1,2,neN,k=1,2, ... ,n, where p € N is defined by condition (24).
(Here and elsewhere [a] means the integer part of a number a.)

and

V}'{ = me(ﬂ) = (23)

LEMMA 1. Let
0 €[0,7/31 A\ [ty(p— 1), ty(p)] (24)

for some p € N. Then the estimates

;o)

 — k=1[p/2LIp/2+ 1, ....i, k#p—Lpp+]1,
i _ o) _

Me=p_py k=Pt om

i _ o)

Vi = e k=1[p/2),[p/21+ 1, ..., p—2,

hold for i = 1,2.

Proof. Let us mention that by (20) and (24), for k= [p/2],[p/2] +
1, ...,n, we have

(k) sin“(‘c/2)COSB(T/2) 1/k\* n?
dt=0)—(-) 5—75, k#p-Lpp+l,
/ti(kl) cos0 —cost| “° ( )”(”> p? =k et

(25)
sin“(0/2)20(1)(§)“ and  cos’(0/2) = O(1). (26)

Next, let k# p —1, p, p+ 1 and k<. Then by virtue of (12), (16), (21),
(25), and (26) we obtain

1,(k)
dj = / K| dt
z,‘, (k—1)

= O(1)sin(0/2)cos® (0 /2)sin™*""12(0 /2)cos #1120 /2)

1 D —p—m—
/ w0 i/ Deos T AG/2) sin®3(z/2)cos? 1 (1/2) dx
t”

1(k—1) |cos 8 — cos 1]
(27
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p r—a—1/21 [k o—r+3/2 n2
con ()
n n\n | p? — k2|

e r+3/2 ko:—l‘+3/2 0(1)

=0(1)—— _ — (1 - )
O orimr =~ M e Gk oA

Indeed, k17r+3/2p7a+r71/2/(p + k)<min((k/p)“*’+3/2, (p/k)foc+r71/2). How-
ever, « —r+3/2>0 and —a+r—1/2>0. So the first or the second
expression in “min”’ will be bounded by 1, depending whether k< p or p<k,
respectively.

We use asymptotic formula (13) in order to estimate A}. By virtue of (12),
(16), and (22) for k = p+2,...,1n we have

n/2
K1 dt
4, (k)

Ay =

= O(1)sin®(0/2)cos>"(0/2)sin™*"~1/2(0 /2)cos F=1/2(02)

{

cos(nit +
1(6) " cos 0 — cos 1

/”/2 sin® " 2(z/2)c0s 2w ‘
t

L om 2 sin* 122 /2)cosP - 1/2(1/2)
n Jow cos ) — cos T

=Ji + /. (28)

Next, let us mention that the function y(r) = cos(nlr -+ 7,) has opposite
and constant sign on neighbor segments [¢!(k — 1),2}(k)], ke N (see (19)),
and the function y(t) = sin®*" ’*3/2(1/2)0081? ”’“/2(1/2)/((:050 —cosT) is
decreasing on the segment [t (p + 2),n/2]. Thus,

cos(nt +yp)

/”/2 \sin*” r3/2(¢ /2)cosP~ erl/2(r/2)
1) cos ) — cost

< /’ 2kD in* =32 (1 /1 2)cosh~ erl/2(1/2)
t

1(6) cos ) — cost
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Consequently, taking into account (25)—(28), we obtain

Ji <O()sin™*7V2(9/2)cos™ F=1/2(0/2)

(29)

/f 2D sin? " *3/2(z /2)cosP (¢ /2, _ o)
dt = .
1K) cosf —cost k—

As regards J;, by virtue of (10), (25)—(27), and since &« — r — 3/2< — 2 we
get

J, = O0(D)sin” 120 /2)cos” #1720 /2)

W6+ gin* " t12(1 /2)cosh 1/2(1/2)

S
n 1(s) cos 0 — cos 1

121 L1 sy 12 2
=0()(= - —(= —
( )(n) R n(n) §2 — p?
1 n-1 gurtl/2 1 s ;
_ —r=3/2
=o() PR L T o) T2 Zk 2 pzsoC
1 k?

1 oau—r—3/2 a—r—1/2
<O ——1775 R 2ZS P=o)——5 R 2 k /

koc—r-‘r3/2 B 0(1)

_ _ 30
PR - p) k—p (0

=0(1)

Combination of (29) and (30) leads to the desired estimate.
Analogously, we estimate V}. (See (13), (16), and (23).)

6(k)
/ Kl dt
4((p/2)

n

V=

= O(1)sin®(0/2)cos>™(0/2)P=+m (cos 0)

{

cos(m +7,)

/’5(") sin* " 3/2(¢/2)cosP~ ’"“/2(1/2)
1(0p/2) cosT — cos 0
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0(1)/t 2B sin* 12 (¢ ) 2)cosbm- 1/2(1/2) r}

([p/2D) |cos T — cos 0
=J'+J% 31

Again, the function y(r) = cos(nlr + ;) has opposite and constant sign
on neighbor segments [t!(k — 1), (k)], ke N, (see (19)) and the function
(1) = sin* " /2)cosﬁ m1/2(g /2) /(cos T —cos () is increasing on the
segment [0, ¢!(p — 2)]. Hence by virtue of (12) and (25)~(27), we have

8 sin*"+3/2(¢ /2)cosP- '”*'/2(1/2)
Ak-1) cos T — cos 0

r—a-12] (" 2 frr 32 o(1
20(1)(2) n\n sl U sy o me ()'
n n\n P —k PP — k) p—k

J' <o()sin V20 /2)cos™P1/2(0/2)

(32)
Similarly, due to (9), (12), (25)—(27), and since o — r 4+ 1/2 > —1

= O(1)sin"*"V2(0/2)cos”P=1/2(0/2)

1 k—1 /t”(H-l) sin®™ r+1/2(T/2)Cosﬁ m— 1/2('(/2)
dt
t

n 1(5) cost — cos 0

s=[p/2]

2

- O(l)<zp>r—x—1/2l k=l l(s)x—r+l/2 n

2 _ 2
n <= nin p-—s

3 1 o« 2 1 o—r+1/2
pccfr+1/2 Z p2 _ 52 <O(1) P r+1/2 k2 Z s

ko:—r+3/2 B O(l)

=0(D) pocfrJrl/Z(pZ _ kz) - p— k

(33)

Finally, combination of (31)—(33) completes estimation for V}.
Estimates for d7, A7, and V7 are obtained analogously.

LEMMA 2. Let the segments I = I} (f) = [t,(k),£,()] (f € C,i=1,2, k
=1,2, ... ,n, and n € N) be determined by the conditions

9Ty ) = 19(z, (k) — 9(z, (k)| = e l9(x) — g(@, (kDI (34)
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Then for every f € C the estimate

‘(1 —x) (1 4+x)" [ ll(f (x) = FODKE M x, 0pP 1) dr

i=l k=1

2 n 1[
<c(a, ﬁ){o(l) +Y Y M} (35)

holds uniformly with respect to x € [1/2, 1], where |g(I}, )| >9(I,, )| for k =
1,2,....n—landi=1,2.

Proof. Let pe N be determined by condition (24). Next,

‘(1 — )" (I +x)" 1 ll(f @) = ORS00, 0p P e

= (1 — cos 0)" (1 + cos 0)"

/ (9() — g(ONK "B Tm (cos 0, cos 1)p™P(cos T)sin T dt
0

6(p/2D 0(p=2) 0(p+1) /2 n
U | s || 711
0 15((p/2D 1h(p=2) ih(p+1) /2
=L+ h+S+Jds+ s (36)

Obviously, the terms J; and J, will be absent if p<2.
By virtue of the definition of modulus of continuity we obtain

th(p+1)
J3 <(1 = cos 0 (1 + cos 0)" / 19(2) — g(O)
th(p-2)

|K@+rBEm) (cos 0, cos T)|p™P(cos T)sin T dt

< g, [t (p+1) =t} (p—2))(1 — cos 0)'(1 + cos 0)"

t!(p+1)
/ IKErBEm) (cos 0, cos )| p™P (cos T)sin T dt = o(1).  (37)
0h(p-2)

Indeed, w(g,|tl(p+ 1) —ti(p—2)]) = O()w(g, 1/n) = o(1). As regards
the rest of the expression, it is bounded by a constant, uniformly with
respect to n € N and x € [1/2, 1], due to formula (2) and estimates (9), (12),
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(25), and (26)

n—r—m
Z P(cc+i Jp+m) (COS G)P(oz+r ﬁer)(COS ‘L')
k=0

L(p+1)
(1 —cos0)'(1 + cos 0)"

4h(p=2)

p*P(cos t)sin 7 dt

t!(p+1) n—r—m —o—r—1/2
= O(1)sin*(0/2) / " > <sm(e/2)+ 1)

(P=2) k=1

—o—r—1/2
<sin(‘c /2) + %) sin®1(1/2) dt

:0(1)(5)2H2r+]% Zp<%)2a2r1+ 21; ( ) oy
<

e pr
k'k>n k n

_ 0(1)(§)M+2r+1 %{ <E)Za+2r+2+n<§)—2a—2r—l} — o).

In view of (12), (14), Lemma 5 [8, p. 904], and due to |x — #|=>1/2

Js< 0(1)((1 — x) (1 + x)"|Prfm )|‘ / SO = /) f () plas B ) p@P ey di

n+1rm

=o(1) (33)

n+l—r—m n—r—m

0
+ (l _ x)r(l +x)m|P(a+r ﬁ+m)( )|‘/ f(tzc_ {(x) P(o<+r ﬁ+m)(t)p(1,ﬁ)(t) dt
_1 —

uniformly with respect to x € [1/2,1].
By virtue of (16)—(18) we have

0(p/2)

4(p/2)
Ji< / (9(x) — g(0)K; dt| + (9(x) — g(ONK> dt| = J11 + J1.
0

(39)
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Furthermore, by (13) we get

t\(p/2D
i = / (9(x) — g(O)K: d
0

= O(1)sin* (0/2)cos>™(0 /2)P* L7+ (cos 0)

—r—m

4(p/2) Sin1*7+3/2(f/2)cosﬁfm+1/2(,[/2)
_ 0 ) d
{ [, 0 gtoeosime )T SR .
o(1) 4r/2) in® "2 /2 cosh-m-1/2(1 /2
n (1) Ig(r)—g(H){sm (t/2)cos (t/ )dr
noJoq |cos T — cos 0

(1)
T /0 (9(0) — g(O)K, dv

Obviously (24)-(26), t €[0,0/2], and t}([p/2]) = O(1)0/2 imply |cos 0 —
cos 7| = O(1)0” and |g(x) — g(0)| < (g, 0).
Consequently, by (12)

1 sor—o—1/2 m—p—1/2 t,l,([p/Z])
J1, <O 120/ 2)c0s" FV2(0)2) / g0
il
sin“*"+3/2(1:/2)cos/3’m+1/2(1/2)d
cost — cos 0
=0(1)w(g, 6). 41)

S 0r7171/29w(g’ 0)0726a7r+3/2

On the other hand, for every fixed 6 e (0,7n/3], the integral part
of Jf,l converges to zero by Lebesgue Convergence Theorem.
Moreover, the convergence is uniform for 60 € [J,n/3], where 0<d<n/3
is fixed.

Now let us show that Jll,1 =o(1) uniformly with respect to
0 €[0,7/3]. Indeed, let ¢>0 be an arbitrary fixed number. Then there
exists 0 >0, such that w(g,0)<e as soon as 6 e[0,5]. Now let us take
n(g) € N so large that J} | <e as soon as n > n(e) for any 0 € [5, /3]. The rest
follows from (41). ’
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Due to (12)

JE, =0(Dsin"*"2(0/2)cos™ F1/%(0/2)

1 [up/2) sin® "+ 12(¢ /2)cosPm=1/2(z /2)
[ ) / /D 4

nJuay cost —cosf

=0+ 1/? ! 0w(g, 0)020%"+1/2 = O(l)%w(g, 0) = o(1) (42)
n n

uniformly with respect to 0 e[t!(1),n/3] by the similar argumentation
presented above. J7 | is estimated analogously.

Now let us estimate expressions for J, and Js. Taking into account (18) we
have

2 t,',(P*Z) n/2
Bty < / (9(x) — gO)K, dr| + / (9(0) — g(O)K; d
i=1 4,(p/2) Bh(p+1)
=01 +J22 + 41+ Jap. (43)

By Abel’s transformation we obtain

tH(p-2)
oy :/ (9(0) — g(O)K, d
0 ([p/2D)
p2 0y(k)
= > [ o - geik dr
k=[p/2]+1 7 talk=1)
p2 (k)
+ ) (gl — g(0) Ky dr
k=[p/2]+1 4, (k1)
p2 0(k) |
S / [9(2) — gL RIK) de
k=[p/21+1 7t k=1)
p=3 11 (k)
LS ) - gl e+ 1) / Kidr
k=[p/2]+1 4((p/2D
th(p—2)
+ (9(ty(p — 2) — 9(0)) K dt. (44)

4,(Lp/2)
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Taking into account Lemma | we have

p—2 1) (k)
Ba< Y max g gl [ il
k-1)

kappry TG DB
15 (k)
/ K] dt
11(p/2)

n

0(p=2)
/ K] dt
t((p/2)

p—3
+ Y lg6) — gtk + 1))

k=[p/2]

+ lg(t,(p = 2)) — 9(0)|

p—2 p—2
< D @G, + D g ) — gtk + 1)IVE,
k=[p/2] k=[p/2]

1
+ O(l)w<gs ) p—2.n

<O ! &~ 1 1 |g( l'lk )|
<o) w(g,; 3l f<om (1>+Z @)
k=1

Analogously, we have

/2
Jiy = / (9(0) — g(O)K, d

(pt1)

n t,‘l(k) n/2
=3 [ - ik, aer S 1) — g0l 0) / K

k=pt2 7 ty(k=1) k=p+2

/2
+ (9(,(p +2)) — 9(0)) K dt
(h(p+1)

1 (k)
<> max e - g6l [ Kl
l‘/7 —

Sty el
+ Z g( Gk + 1) — g0 k) / K, de

k=p+2
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n/2
j( 1(1df
A(p+D)
n

n—1
1
< 3 by, + S lgdl sk, +0(1>w(g,;)A‘,,+z,,,

+ lg(ty(p +2)) — g(0)|

k=p+2 k=p+2
n 1 n 1
O(l){w<g,%) .S —|Z(f"”)|}<0(l){o(l)+z7|g(11’?’”)|}. (46)
k=pt2 p =1

Jop» and Jsp are estimated analogously, so we omit the details.
Combination of (36)—(46) completes the proof. 1§

LeEmMMA 3 (Sablin [14, Theorem 1, p. 88]). Let a sequence A = (Ax);,,
satisfying the conditions of Definition 2, be such that limy_,, Ax /Ay exists.
Then ABV = AcBV if and only if this limit is less than one.

4. PROOFS

Proof of Theorem 1.  Sufficiency: We assume that x € [0, 1] since the case
x € [—1,0] is reduced to the previous one via identity (11).
Let x €[0,1/2]. Then

SO ,2) = FOI< ISTP(f,x) = S22, x|
+ ISR x) = ()
=1S"P(f,x) — Su(g,0)|
+ 18x(9,0) — g(O)] = J1 + /. (47)
J1 = o(1) as n — oo uniformly with respect to x € [0, 1 /2] [5, Note, p. 179].
And conditions (4), (6), and (7) (see Remark) instantly imply the uniform
convergence of J, = o(1) on the segment [0, 1 /2].

Now, let x € [1/2,1]. It is known [8, Proof of Theorem, p. 904] that the
following representation

SEDCfx) = Sialf%) + o(1) (43)

is valid for fe CnEP*P, xe[-1,1], and n=r+ m, where S;,(f,x) =
(1= x)"(1 +x)"STA A (£ (e)(1 —2)7"(1 +x) 7", x).
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It is obvious (see (34)) that
; 1 1
l97;,)l = 0o (g, | <O . (49)

fori=1,2.
Next, due to (1) and (49), applying Abel’s transformation to (35), we
obtain

2

IS1La(f = (), x)|—0(1){o(1>+z Z'g(”k" Z Z i ;j”)'}

i=1 i=1 k=(+1

l 2 k
= {o(1>+w( DD SIS ST
+Z Zw(m } (50)

Since I}, NI}, = 0 for k#s,i= 1,2, and n € N, it follows from Definition
4 that

k
> lgl; I<o(g,k) = (S k)
j=1

and hence

{
1S1A(f — f),%)| = 0(1){0(1)+w( n) Z L, Z u(]l;k)Jrv(f,n)}.

=1 i n

However, v(f,n)/n = O(D)w(f,1/n) [9, Theorem 4, p. 68]. Consequently,
in view of (4) and (48), x € [1/2, 1], and the arbitrariness of £ € N the proof is
completed. 1

Proof of Theorem 2.  Sufficiency: Again, due to (47) and (48) it suffices to
estimate the expression |Si,(f — f(x),x)| for x €[1/2,1]. Without loss of
generality, we may assume that f'#const. Now let us set £ = [1/w(f, 1/n)].
Then according to (50) we get

_ N1, G & lg@ )l
1S1:(/ = S (), 1)l = Oy o(D) + oo f, Z%JFZ -

=o(l) +Ji + />
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It is clear that J; = O(Dw(f,1/n)In[l/w(f,1/n)]=o0(1) as n — oo.
Taking into account that the intervals If , are non-overlapping and |g(Z} )|

=1g(/ n,+1)| k=1,2,..., we can estimate J, as follows (see Definition 3):
2 | s s ;
g( il n ]"A+/ n

oY 3 RS0 ke
= +1 i=1 k=
2, =gt )l

<2 1 S2u0(9) =0 (f) = o(l),

=1 k=1

as ¢ — oo, since the sequence A = (k),2, satisfies the conditions of
Lemma 3. 1
Proof of Theorem B. Since f € DL,

min {w( )Z Z U(k)}\ ( ,l) 1
1<t<n Pard n) <k
= O(I)w(f,%> Inn = o(1).

The rest follows from Theorem 1. 1

Proof of Corollary 1. Let us set £ = [exp(In n/(In In n)’™")]. Then

m{w( Dy S ”(k)}

1 k=€+1

1 Inn nl 1
<o(l - v
( )< ( >(1 In )>’+1 o 1k1nk1n1nk>

| Inlnn
<Ol)|——+Inlnlnn —In—— ) = o(1).
o )<lnlnn+ nmne n(1n1nn)7+1> o)

It is possible (see [10, p. 483]) to construct an example of a function which
satisfies the condition of Corollary 1, but does not satisfy those of Theorem
B or Corollary 2. 1

Proof of Corollary 2.  Sufficiency: If a modulus of variation v(n) satisfies
(6), then V[v] < HBV [3, Theorem 2, p. 232]. Hence, sufficiency of condition
(6) immediately follows from Theorem 2.
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Now let us show the necessity of conditions (4), (6), and (7). Due to (47)
ISED(f, ) = (g Mgy = o(1) (51)

r [a,b] < (—1,1) and every continuous function f.
However, it is known (see [10, Theorem 4 and Corollary 7, p. 493; 18,

Theorem 3, p. 112]) that conditions (4), (6), and (7) are necessary for the
convergence of Fourier series, thus by (51) they are also necessary for the
convergence of Fourier—Jacobi series. 1§

10.
11.

12.

13.

14.
15.

16.
17.
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